J. For. Sci. Env. (2016) Vol. 1 (2): 15 – 21 Journal now available at https://jfse.org.ng/index.php/home Available at www.jfseunimaid.com & www.unimaid.edu.ng © Forestry and Wildlife Department, University of Maiduguri, Nigeria

EFFECTS OF LOCUST BEAN TREE (Parkia bigloybossa. JACQ) ALLEY CROPPED WITH MAIZE (Zea mays. L.) ON EARLY TREE GROWTH AND YIELD OF MAIZE

ODUNOLA AO • ALAMU LO*

Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

*Corresponding Author: loalamu@lautech.edu.ng

ABSTRACT: The interactive effect of (Parkia biglobossa) was investigated on the growth and yield of maize (Zea mays) over a period of twelve (12) weeks at Ladoke Akintola Research farm Ogbomoso. The experiment was laid out in Radomized Complete Block Design (RCBD) with 3 treatments and 3 replicates. Data collected were plant height, number of leaves, stem girth. Leaf area, canopy diameter, number of branches and were subjected to statistical analysis using analysis of variance (ANOVA) while the means were separated using Ducan's Multiple Range Test DMRT at 5% probability level. There were significant differences in the number of leaves and number of branches of P. biglobossa ($p \le 0.05$) of both sole tree and the intercropped. Intercropping affected stem girth and canopy diameter of the tested tree specie. The values obtained for stem girth with sole P. biglobossa (6.5 cm) were significantly higher than the intercropped (3.4cm). Higher numbers of leaves were obtained in maize +P. biglobossa intercrop (275.8cm²) compared to sole P. biglobossa (262.4cm²). Sole maize had higher grain yield (0.98 t/ha) than the intercropped maize + P. biglobossa (0.95t/ha) however maize + P. biglobossa had the highest percentage shelling (50.4) than sole maize (41.6). It was therefore concluded that there were positive interaction between P. biglobossa and maize plant. Hence, it could be recommended that there is need to encourage combination of maize and P. biglobossa at the early growth stage for efficient utilization of available land resources and for conservation of the *P. biglobossa*.

Keyword: intercropping, *Parkia biglobossa*, Maize, interactions.

1. INTRODUCTION

Agroforestry from its name is a combination of two different fields of agriculture and forestry which deals with the co-relation of agricultural practices such as crops or livestock and forest. It contains a lot of products which are formed as a result of combination of two fields for the benefits of mankind as well as for the new development to increase the health and wealth of the population. (Edith Van Walsum 2011).

Agroforestry provides many livelihood and environmental benefits, increasing the assets of poor households with farm grown trees, enhancing soil fertility and livestock productivity on farm grown trees, improving soil fertility and livestock productivity on farms and linking poor households to the market for high value fruits, oils, cash, crop and medicine. Domesticating wild fruit trees such as *Parkia biglobossa* (locust beans) using simple sustainable technologies like nurseries, soil fertility management and domestication program on a multiple land use system basis has allowed small holder farmers to increase their earnings.

Wild fruits are of Africa's nutritional importance. Most of Africa's edible fruits are wild and are food sources for both wild animals and man. It is the fruit of a wild fruit that is usually considered edible, many times the wood, seeds or leaves are not edible. Relatively small number of people regularly eats the fruits of wild fruits trees; still, edible wild fruit trees produce delicious fruit

that can be used for canning and fresh use if the fruits are harvested at the right time of the year. In many tropical countries, rural people traditionally harvest wild range of leafy vegetables, roots, tubers and fruits from the wild because of its taste, cultural uses as food supplement due to food shortage labeled as famine or hunger food, wild fruit have been recognized to have potential to meet food and income security (Guinad and Dechassa 2000; Kebu and Fassil 2006).

Despite the vastness of wild fruit resources, much research work has not been carried out incorporating wild fruit trees and arable crops in agroforestry practices. These may be as a result of lack of information available on domestication of these wild fruit trees and lack of appreciation of agroforestry practices by farmers. Domestication of wild fruit trees can only be possible if integrated with arable crops in a deliberate manner. Therefore investigation is needed on interactive effects of *Parkia biglobossa* and the growth and yield of maize. The objectives of the study were to determine the interactive effects of *Parkia biglobossa* trees on the developmental stages and yield of maize and also to determine the interactive effects of maize on the early growth of the tree.

Parkia in the family fabaceae (Alabi et al. 2005). Locust beans is a native of Africa and it is an important multipurpose tree of West Africa Savannah land as well as one of the most common species of the parkland agroforestry system. The seeds of parkia are used in preparation of Daddawa, protein and fat rich food (Mertz et al. 2001). The dried powder is often mixed with water to produce a drink called dozim by the Dagbani tribe and bololo in Hausa (Hall et al. 1997). The striking red spherical inflorescences of P. biglobossa which appear in the dry are often used by children for games. In West Africa, its bark, roots, leaves, flowers, fruits and seeds are commonly used in traditional medicine to treat a wide diversity of complaints, both internally and externally, sometimes in combination with other medicinal plants. Daddawa is rich in protein, lipids and vitamin B₁₀ (Odunfa 1981). Maize (zea mays) is an important cereal crop and a source of carbohydrates in human diet in developing countries, it is used as animal feeds worldwide and ranked the third most important cereal crops of the world. It is perhaps the most domesticated of all cereals (Benz 1994). Maize is very nutritious as it is an important source of carbohydrate, protein, iron, vitamin B and known to digest very quickly. The focus of this research therefore is to guage the tolerance level of

interactions of maize and the wildfruit trees at their infancy.

2. MATERIAL AND METHODS

The experiment was sited at the Teaching and Research Farm of Ladoke Akintola University of Technology Ogbomoso, Oyo State, Nigeria which falls within the Southern Guinea Savannah Agro-ecological zone of Nigeria. Ogbomoso lies between longitude 4º10E and latitude 8010N. This location is cold and dry from November to March and warm and moist from April to October. It is characterized by bi-modal rainfall distribution whereby the early rainy season starts in late March and ends in late July/early August, followed by a short dry spell in August and finally the late rainy season from August to November. The annual mean rainfall is between 1150mm and 1250mm (Olaniyi 2006). Maize (Oba Super) was used and the seed of Parkia biglobossa was obtained from National Institute for Horticultural Research and Training (NIHORT), Oyo state, Nigeria. The parkia seedswere subjected to pre germination treatment before planted, they were dipped in 100°C boiling water for ten seconds to enhance germination. They were then soaked overnight before planted the following day in the seed tray. After germination, the seedlings were transplanted at 5 months into polythene bags which was later transplanted to the field with a spacing of 1m x 1m and later intercropped with maize at 0.75m x 0.5m per plot. Three treatments tested were T_1 –sole maize, T_2 – Sole Parkia, T₃ – Maize +Parkia. Nine beds (9) each 4m by 3m dimension were prepared, one plot was separated from another by 1m and the replicate by 2m, the plot size was 16m by 11m.

Field preparation and cultural practices like clearing, ploughing, watering, supplying and thinning for the tree plants were carried out. Weeding was also done manually using hoe at every 2 weeks. The arrangement pattern for the intercropping is intra row. Data were collected on maize and trees at 2,4,6,8 and 12 (WAP). The data collected were plant height using measuring tape, stem girth with veneer calipers. Leaf area was measured using non destructive methods by Saxena and Singh (1985) using the relation 0.75 (length x width). Number of leaves of maize and tree, number of branches of trees was counted by direct counting of all developed leaves and branches. Number of plant per plant was recorded by physical counting of the plants. Number of cobs per plant was recorded by counting the number of cobs on tagged plants. Fresh weight of cobs

was obtained from each plot and it was weighed with a balanced scale. Dry weight of the cobs was obtained after the cobs were sun-dried and weighed with the help of a balance grain measured with a balance scale. Percentage shelling was obtained by the relation grain yield divided by cob and grain yield multiply by 100. One hundred grain weight were obtained by picking 100 grains and measured with (CAMRY) sensitive scale. The data collected were subjected to analysis of variance (ANOVA) and means were separated using Duncan Multiple Range Test (DMRT) at 5% probability level.

3. RESULTS

3.1 Effects of Alley Cropping of Maize with Parkia biglobossa on Maize Growth

There was no significant difference ($p \le 0.05$) of parkia growth on height of sole maize and maize + parkia in all weeks except at 4th WAP where parkia had a negative effect on the height of maize (Fig. 1). The growth of parkia had positive effect on stem girth of maize at 12th WAP where maize + parkia had higher stem girth (7.2cm) than sole maize (6.8cm) while other weeks are not significantly different from each other Figure 3 shows there was significant (Fig. 2). difference in leaf area at 2nd, 4thand 12thWAP where parkia tree reduces the leaf area of maize while leaf area at 6 – 10thWAP were not significantly different. Number of leaves where not significantly affected by parkia growth unless at 4th and 6th WAP which had adverse effects on the number of leaves (Fig. 4).

3.2 Effects of Alley Cropping of Maize on Growth Parameters of Parkia biglobossa

Effects of maize on the height, stem girth leaf area and number of branches of *parkia* was significant across the weeks. Sole *parkia* had taller plants, more robust stem, broader leavers and number of branches than where they are intercropped with maize except the leaf area at 2WAP which was not significantly different (Fig. 5, 6 and 7). However intercropping *parkia* and maize favours the number of leaves produced by the tree (Fig. 8). Intercropped *parkia* had higher number of leaves at early stage of growth (2-6weeks) when compared with sole maize. Canopy diameter of *parkia* was not affected by maize intercrop unless at 12 WAP(Fig. 9) where intercrop of *parkia* and maize (29.8cm²) favour the canopy diameter and was significantly different from sole *parkia* (24.4cm²) sole maize has the highest yield

(0.98t/ha) compared with maize + parkia (0.95 t/ha) as shown in Figure 11 however, maize + parkia has the highest percentage shelling (50.4) than sole maize (41.6) as shown in Table 1. Highest 100 grain weight was recorded in maize + parkia (14.6g) and sole maize (14.4g) as shown in (Table 1). Highest number of cobs/hectare was recorded in sole maize which was closely followed by maize + parkia

4. DISCUSSION

There is need for development of traditional agriculture through agroforestry which will not only help to maintain and possibly improve the soil fertility to ensure sustainability of traditional agriculture but would also help to provide fuel wood, fruit and timber to rural farmers. In addition, incorporating of trees into the farm land is well recognized under agroforestry system for maintaining soil fertility and productivity.

It was observed from the experiment that the height of maize was not significantly affected except in 4 WAP where sole maize produced taller plant than where they were intercropped with tree. This may be due to competition between the maize and the trees species for nutrients. This was in line with the study of Sangakkara et al. (2004) who reported that, competiton among the plant may be from nutrient update and sunlight interception. Also, due to maize architecture, maize grow taller than tree species, which ws in line with the submission of (Zamir et al. 2011) that a high stand plant have advantages to competition for light, ariation, nutrient, and consequently compelling the plant to undergo less reproductive plantt but still have underground competition and above ground competition. Competition for the above and below ground resources may arise between trees and crops growing in the same space and soil mass, especially when the trees has more competitive advantage than the crops (Schroth 1999).

The intercropped *parkia* and maize favoured the number of leaves produced by the trees and had a positive effect on the stem girth of maize. *Parkia* intercropped maize had more robust stem girth than sole maize. This was in line with the report of (Namirembe 1999) which stated that soil moisture may reduce stem diameter, plant height and yield of maize in agroforestry system relative to sole crops.

5. CONCLUSION

- 1. In the tropic, maize is an important cereal crop and source of carbohydrates in human and animal diet. It is also the third most important cereal crops of the world. Intercropping maize with agro forestry trees is not a new phenominium; it has been in existence since ages. This study confirmed that wild fruit tree like *Parkia biglobossa* has an interactive effects on the growth and yield of maize
- 2. The differences due to competition were not appreciable because the trees are still youngbut there was significant difference between the sole maize/sole tree and where they are intercropped.
- Combination of maize and tree at early stage of life is still encouraged to utilize the available land resources as obtained from the result of this experiment.
- 4. It could be recommended that there is the need to encourage combination of maize and *Parkia biglobossa* at early stage for efficient utilization of the available land resources. However, a further study is required of the effects of maize (oba super) intercropped with *Parkia biglobossa* when the latter has a closed canopy.

REFERENCES

Alabi DA, Akinsulire, OR and Sanyaolu MA (2005). Qualitative determination of chemical and nutritional composition of Parkia biglobosa. African Journal Biotechnology, 4: 812-815

Benz BF (1994). Maize origin, domestication and development in carraso D. editor. The oxford encyclopedia of Mesoamerican culties: the cultivation of Mexico and Central America Oxford University Press New York. Pp. 147-150.

Edith Van Walsum (2011). Small Scale agriculture for sustainable society. Farming matter magazine published by ILEIA.

Guinad Y and Dachassa L (2000). Indigeneous food plants in southern Ethiopia reflections on the roles of "farming foods" at the time of draught. United Nations Emergencies Unit from Ethiopia (UNEUE), Addis Ababa.

Hall AE, Thiaw AM and Ehlers JD (1997). Water – use efficiency and drought adaptation of cowpea. Pp. 87 – 98. In: Advances in cowpea research, B.B. Singh et al. (Eds). IITA/JIRCAS, IITA, Ibadan, Nigeria.

Kebu B and Fassil K (2006). Ethnobotanical Study of wild edible plants in derashe and Kucha district, South Ethiopia. *J. Ethinobiol. Ethinomed* 2:35

Mertz O, Lykke AM and Reenberg A (2001). Importance and Seasonality of Vegetable

- Consumption and Marketing in Burkina faso, *Economic Botany* 55(2): 276 289.
- Odunfa SA (1981). Identification of the microorganisms associated with Iru Fermentation *Journal Plant Foods* 3:245-250
- Olaniyi JO (2006). Influence of Nitrogen and Phosphorous fertilizer on seed Yield and quality of Egusi Melon (Citrullus Lanatus (thunb) mansf in Ogbomoso, South Western Nigeria Ph.D Thesis, University of Ibadan, Nigeria. 199Pg.
- Sangakkara UR, Bandaranayake PSR, Gajanayake JN and Stamp P (2004). Plant population and yield of rain fed maize grown in wet and dry seasons of the tropics. Maydica 49: 83-88.
- Saxena MC, Singh KB (1985). The Chikpea Chapter 7: Genetics of chick pea, F.J. muchlbauer and K.B Siyh C.A.B. Inter Cent. Sales, Walling ford, Oxon Oxio 8DE UK.
- Schroth G (1999). A review of below ground interactions in Agroforestry, focusing on Mechanism and management option. Agroforestry system. 43: 5-34
- Zamir MSI, Ahmad AH, Javeed HMR and Litif T (2011). Growth and yield behavior of two maize hybid (*Zeamays L.*) towards different plant spacing Cerceceair Agronomice in Moldova. 14(2): 33-40

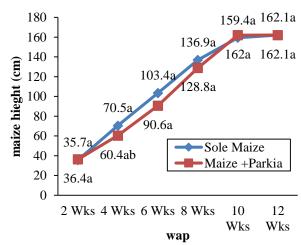


Figure 1: Effects of Alley Cropping of Maize with *ParkiaBiglobossa* on Maize height

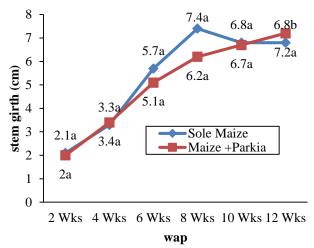


Figure 2: Effects of Alley Cropping of Maize with *ParkiaBiglobossa* on stem girth

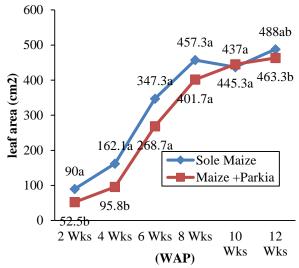


Figure 3: Effects of Alley Cropping of Maize with *ParkiaBiglobossa* on leaf area

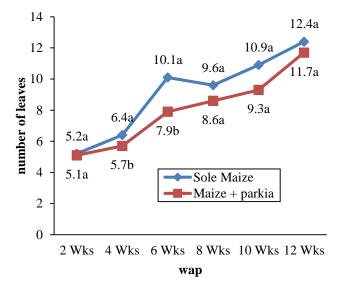


Figure 4: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on number of leaves

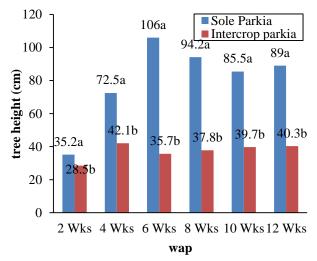


Figure 5: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on tree height

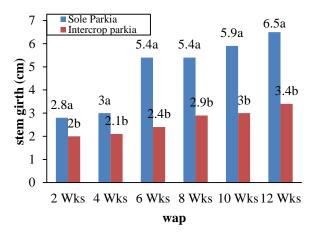


Figure 6: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on stem girth

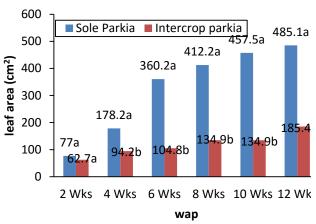


Figure 7: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on leaf area

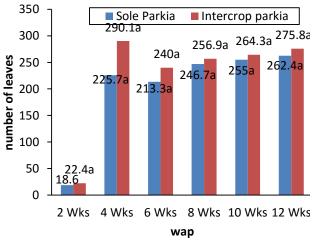


Figure 8: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on number of leaves

Figure 9: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on canopy diameter

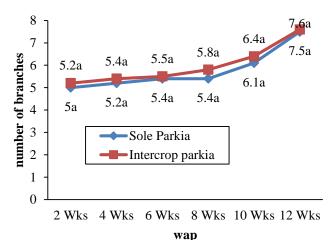


Figure 10: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on number of branches

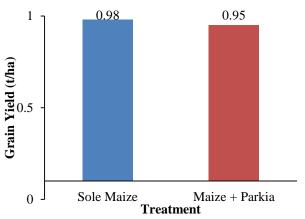


Figure 11: Effects of Alley Cropping of Maize with *Parkia Biglobossa* on number of branches

Table 1: Effects of tree species on the yield component of maize

Treatment	No of cob/ha	Fruit weight (cob+stover)	Cob weight (kg/ha)		% shelling	100 grain wt
			Fresh	Dry	_	(g)
Sole maize	20,500a	4716.6a	4333.4a	2361.2a	41.6b	14.4a
Maize + Parkia	16166.6b	3488.4b	3250b	1888.8b	50.4ab	14.6a